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Best-Estimate Low-Dose Extrapolation
of Carcinogenicity Data

by H. A. Guess* and K. S. Crump*

At the 1974 NIEHS conference on low-dose ex-
trapolation, Peto (/) reported that evidence con-
cerning chronic exposure to direct carcinogens (i.e.,
those acting on the DNA, producing mutations)
suggests that the excess rate of incidence over
background should be given by the product of a
function of the dose and a function of the exposure
duration. The function of the dose should be a
plynomial of the form

qd' + god® + ...+ ged®

with g¢; = 0 and g, > 0. Expressions of this form for
the excess rate of incidence over background cor-
respond to lifetime response probabilities of the
form )

P(d) =1 —exp{—(go+ qd" + ... + gxd™)}
q =0 1

We have developed a low-dose extrapolation
technique for dichotomous data, using an assumed
dose-response relation of the form (1) but without
making any assumptions about whether the coeffi-
cient of the linear term is positive or about the de-
gree of the polynomial. We use maximum likelihood
to determine both the degree K of the polynomial
and the coefficients q; = 0, for 0 <= i < K. Al-
lowance for nonzero background is made automat-
ically by fitting the constant term, ¢,. Our estimate
of the increased response probability over
background is given by

Pdy —P0) = e [l - exp {- (q:d" +
coo t+ grd®)}] (2)
At very low doses this looks like

P(d) —~ P(O) = e gu 3)
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for d << 1, where [ is the smallest positive integer
for which g, > 0. At high doses, the shape of the
curve is governed by the highest-order coefficient,
dx-

Unlike previous dose-response maodels, which
contain only one or two free parameters to be de-
termined, this model contains infinitely many, be-
cause the degree of the polynomial is left to be de-
termined by the data. For any given set of data,
only finitely many coefficients will be nonzero;
however we do not make any a priori assumptions
about which coefficients will nonzero, In view of
Eq. (3), the resulting Jow-dose extrapolation will
look like that of an /-hit model for some/ =12, . . .,
depending on the data.

By considering at once all polynomials with non-
negative coefficients—unrestricted as to degree
we are able to compare dose-response curves that
are linear in the low-dose range with dose-response
curves that are extremely flat in the low-dose range.
For each set of data we calculate the (in most cases)
uniquely determined set of nonnegative coefficients
which best fits the data, in the sense of maximizing
the likelihood function over the class of all polyno-
mials with nonnegative coefficients. Maximum
likelihood estimation by use of polynomials with
nonnegative coefficients (absolutely monotonic)
polynomials) is quite different from maximum
likelihood estimation with polynomials with unre-
stricted coefficients. When the coefficients are un-
restricted, it makes no sense to consider polyno-
mials whose degree is greater than the number of
doses at which tests are conducted. When the coel-
ficients are constrained to be nonnegative, it is gen-
erally not possible to fit the data points exactly, no
matter how high the degree. In general increasing
the degree beyond a certain point ¢can actually cause
the likelthood function to start decreasing. Unlike
the situation with unrestricted coefficients, in-
creasing the degree of absolutely monotonic
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polynomials does not lead to complex curve shapes.
All that happens is that the high-dose part of the
curve hooks up more sharply while the low-dose
part of curve flattens out. The flatter the low-dose
part of the curve, the higher will be the predicted
dose corresponding to a given level of increased risk
over background. Thus it is desirable not to exclude
high degree polynomials because doing this limits
artificially the extent to which data which are best
fit by very flat curves can be fit by curves of the
form (/). For this reason, we have developed the
theory needed for maximizing the likelihood func-
tion globally over all absolutely monotonic poly-
nomials, unrestricted as to degree. We have an effi-
cient method for calculating such estimates and
have obtained theorems describing their statistical
properties, such as asymptotic unbiasedness, strong
consistency, and asymptotic normality. In addi-
tion, we derive and calculate asymptotic (large-
sample) confidence intervals for the risk estimates
P(dy — P(0) and compare the calculated confidence
intervals with those obtained by computer simu-
lation. These confidence intervals are not the ordi-
nary binomial confidence limits at the test doses.
Rather they are obtained by means of a limit
theorem which we prove. Finally, we have de-
veloped a Monte Carlo goodness-of-fit test, which
involves comparing the actual data with sets of arti-
ficial data simulated using the best estimate re-
sponse probabilities.

All of these calculations have been assembled
into one computer program which reads the
dichotomous data and calculates estimates of the
increased response probability over background,
confidence intervals for these estimates, and
goodness-of-fit-test results.

Qur main conclusions are as follows: We can
easily specify hypothetical sets of dichotomous
dose-response data for which the best estimate
(maximum likelihood) low dose extrapolation of the
form of Eq. (1) is much closer to a probit extrapola-

*Probit curves vanish to infinite order at the origin in the
sense that d*®{a + blogd) —» Oasd—Oforallk =12, ...,
where @ is the standard normal distribution function. Curves of
the form (1), being analytic, can only varish to finite order, Thus,
given any curve of the form (1) and any probit curve, the probit
curve will eventually undershoot the curve of form (1) for o
sufficiently close to 0. However, as Table | shows, it is not
difficult 1o fit a probit curve with a curve of the form (1} down to
doses corresponding to risk levels of about 1077,

TWith the dimethylnitrosamine data it is possible to make the
linear coefficient ¢, vanish by excluding the response at the
highest dose tested. However, the goodness-of-fit, as measured
by cur Monte Carlo goodness-of-fit test, was not rejectable at the
10%% level with the highest dose included. For this reason, it did
not seem valid to exclude this response.
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tion than to a linear extrapolation. Table 1 illus-
trates such data. We cite these results to dem-
onstrate that it is mathematically possible for risk
estimates based on Eq. (1) to be approximately the
same as risk estimates based on a probit moedel and
to differ by several orders of magnitude from risk
estimates based on a linear model. *

Table 1A. Hypothetical data for which the multistage model
approximates a probit curve.”

Dose  Animals tested  Animals with positive responses

0 1000 (]

5 1000 1]
10 1000 0

18 1000 1
30 1000 11
45 1000 42
60 1000 a5
75 1000 6l

?The data are expected values computed from the probit curve
Pidy = @ (—7.18 + 3.30 log d}. This curve was also used to get
the probit low-dose extrapolation. The multistage and linear ex-
trapolations were obtained from the above hypothetical data by
maximum likelihood.

Table 1B. Low-dose extrapolations of data of Table 1A.

Daose d corresponding to given risk

Probit Multistage One-hit
Risk P{d) Model model® model
108 299 028 75 x 10-¢
1077 3.99 0.61 7.5 x 10
10 5.44 1.32 7.5 x 10
1078 7.65 2.85 7.5 x 1072
10~ 11.19 6.13 7.5 % 1072
103 17.35 13.22 0.75
10-2 29.56 28.52 7.55
10! 6l.24 62.42 79.14

“The multistage model is the model based on Eq. (1).

In every set of actual data we have analyzed, the
linear term g, is positive, and the best-estimate low-
dose extrapolation is much closer to a linear ex-
trapolation than a conservative Mantel-Bryan ex-
trapolation. We have analyzed data for vinyl
chloride, dieldrin, DDT, dimethylnitrosamine, and
ionizing radiation. Figures | and 2 illustrate the re-
sults for dieldrin.t In the range of increased response
between 1075 and 10°® the best-¢stimate dose-
response curve of the form of Eq. (1) for these
agents is typically one or two orders of magnitude
above a conservative Mantel-Bryan extrapolation.

Our results have implications which should be
considered by anyone who intends to design a
large-scale experiment to measure the shape of
dose-response curves for chemical carcinogens in
the very low-dose range. When both very flat
curves and gradually sloping (linear or nearly linear)
curves are considered together, it is extremely dif-
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FiGure 1. Plot in which dieldrin data have been fitted by use of
Eq. (1). The dark dots indicate data points. The lines with
bars at each end represent 95% two-sided confidence inter-
vals for the risk at the test doses.
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FIGURE 2. Low dose estimates of extra risk based upon the same
dieldrin data as Figure 1 by use of both expression (2) and
also the Mantel-Bryan approach.

ficult on mathematical grounds (even with nearly
perfect data) to reject the hypothesis that the dose-
response curve is nearly linear in the dose range
corresponding to increased risks over background
of about 107 or less. We demonstrate this with two
examples, one in which no background is present
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and the other in which there is an expected
background effect of about 10%.

Figure 3 shows low dose extrapolations for the
hypothetical data simulated as described in Table 2.
The expected response frequencies at the test doses

lie on the curve
Pid) = 1 — exp {—1.54 x 107"*¢¥} 4

One hundred sets of data were simulated bino-
mially for the eight doses shown in Table 2 with
1000 animals per dose. A maximum likelihood best
estimate dose-response curve of the form (1) was
calculated for each data set. At each of eight levels
of increased risk over background P(d) — P(0) =
10-1, 1072, . .., 1078 the doses corresponding to
these risk levels were ranked in decreasing order.
The curve labeled ‘‘true dose response curve from
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FIGURE 3. Best-estimate low-dose extrapolations for 100 sets of
simulated data. Test parameters are shown in Table 2.

which the test data were drawn’’ is the graph of Eq.
(4). The other four curves in Figure 3 were obtained
from the best-estimate low-dose extrapolations of
the 100 sets of simulated data. For example, the
curve labeled “*10th lowest dose (out of 100) at each
risk level’’ is the curve constructed by connecting
the 10th lowest of the 100 best-estimate extrapo-
lated doses corresponding to a risk level of 1071,
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Table 2. Parameters for simulation study (low dose extn:apolations
are shown in Fig. 3).”

Dose  Animals tested Response probability used
0 1000 0.000
30 1000 0.010
35 1000 0.034
40 1000 0.096
45 1000 0.228
50 1000 0.451

“The response probabilities used lie on the curve: Pld) = 1 —
exp {~ 1.54 x 107"*4%}. One hundred sets of dala were simu-
lated, and a best-estimate dose—response function of the form (1)
was calculated for each set. The doses corresponding to in-
creased risks of 1071, 10~%, . . ., 107* were calculated for each set
and each of these 8 sets of 100 doses was tabulated in decreasing
order.

with the 10th lowest at a risk level of 1072, and so on
up to the 10th lowest at a risk level of 1078, The
median curve was constructed by connecting the
median of the 100 best-estimate extrapolated doses
at each of the risk levels 107!, , . ., 1075,

The median curve is quite close to the true dose—
response curve {4), as it should be. However, the
striking result of this study is that the envelope
curve for the 10th lowest dose at each risk level is
almost perfectly linear at risk levels below 1073,
This curve represents roughly an upper 90% confi-
dence interval on the true dose response curve. The
study shows that if a carcinogen with the highly

nonlinear (almost thresholdlike) curve (@) as its true -

dose-response curve were to be tested in a perfectly
conducted large-scale (8000 animal) test with no
background effects present, using the doses shown
in Table 2, the test data would probably not reject
the hypothesis of linearity at the 10% significance
level. In fact, the upper 90% confidence curve from
the test would probably not be very different from a
simple linear extrapolation of the expected response
frequency at the lowest positive dose tested.
When background is present, it is even more dif-
ficult to reject the hypothesis of near linearity in the
risk range of 10-%, Table 3 illustrates this dramati-
cally. By changing the outcomes of only 11 out of
8000 animals the best-estimate dose corresponding
to an increased risk of 10¢ over background
changes by more than three orders of magnitude.
Intuitively, what is happening here is that slight
changes in the experimental outcome involving a
few tenths of a percent of the animals at each dose
have an appreciable probability of occurring by
pure chance. Such changes c¢an transform data
which are best fit by an extremely flat dose—
response curve into data which are best fit by a
dose-response curve with just the slightest hint of a
positive linear term. When one extrapolates back to
risks of 107€ or less, this small difference in slope is
magnified by several orders of magnitude.

152

Table 3A. Hypothetical data illustrating extreme sensitivity of
best-estimate extrapolation to minute changes in data when
background is present and true curve is flat.

Responses
Dose  Animals tested  Experiment 1 Experiment 2

(] 1000 103 100

2 1000 99 99
15 1000 100 105
30 1000 109 112
35 1000 131 131
40 1000 187 187
45 1000 305 305
50 1000 506 506

“Best-estimate dose response curves; experiment 1: P(d) =
1 —exp{—(0.105 + 1.1 x 107%%7 + 1.5 x 10"d%)}; experiment 2:
Pldy=1—exp{—0.106 + 1.6 x 107%d" + 1.2 x 10~M4% + 7.2 x
10-174%}.

Table 3B. Low dose extrapolations of data in Table 3A.

Dose

Increased risk P(d) — P(0) Experiment 1 Experiment 2

10-® 5.40 7.20 x 107#

107 7.20 7.20 x 10~

s 9.60 7.20 x 1073

10~ 12.80 7.20 x 1072

104 , 17.09 0.72

10 22,78 7.20
Summary

" -An‘important tentative conclusion from our work
is-that~when dose-response curves that are ex-
tremely flat:(probit-like) in the low-dose range are
compared with dose response curves that are nearly
linear-in the low-dose range, the nearly linear
curves-fit the data better for each of the four chemi-
cal compounds for which we have analyzed data. A
second conclusion is that if anyone has data to sup-
port a very flat dose—response curve in the low-dose

‘range, this technique would permit one to infer the

flat shape from the data rather than having to as-
sume a flat curve shape, as one implicitly does when
using a probit technique. (However, as the
discussion above indicates, it is likely that any valid
upper 5 or 10% confidence limits on the risk esti-
mates from the data would not differ much from
lincar extrapolations.} Finaily, we believe that
simulation studies such as are discussed above
could be useful in designing animal carcinogenicity
tests and in helping to decide whether a given test
design has much chance of accomplishing its objec-
tives.

In our opinion, these results have implications
both for test design and for risk assessment. They
suggest that if the hypothesis of a nearly linear
dose-response curve in the low-dose range cannot
be ruled out by assumption, then it scems question-
able that it can be rejected by the data, even in cases
where it may be false.
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